If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2-4p-48=0
a = 2; b = -4; c = -48;
Δ = b2-4ac
Δ = -42-4·2·(-48)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-20}{2*2}=\frac{-16}{4} =-4 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+20}{2*2}=\frac{24}{4} =6 $
| 25w-12.75=114.25 | | 4x^2/2x-8=12 | | 25w+12.75=114.25 | | 4x^2/2x-8=20 | | 12.75w-25=114.25 | | H(2)=10x-9 | | 9m-(3+7m=) | | r/6=-5/2 | | 4(p-3)=12 | | H(-9)=10x-9 | | -7=r+(-12) | | m^2+23m-22=0 | | X+4y-22=0 | | 16n=11 | | 25=-x+7x+7 | | m^2-22+23m=0 | | 22+2a=37+6a | | H(1)=10x-9 | | 8a+96=180 | | 10-3x-1=7÷3x+2 | | 5/2x-5=7 | | m^2-22=-23m | | m^2-2^2=-23m | | -20+5x=15 | | H(x)=10x-9 | | 17=x+49 | | x+x+1=215 | | 5x+3x-65=23 | | -2p+3(-2+3p)=9+2p | | X^2-6x-15=1 | | 6x+9x-116=64 | | 6x+9-116=64 |